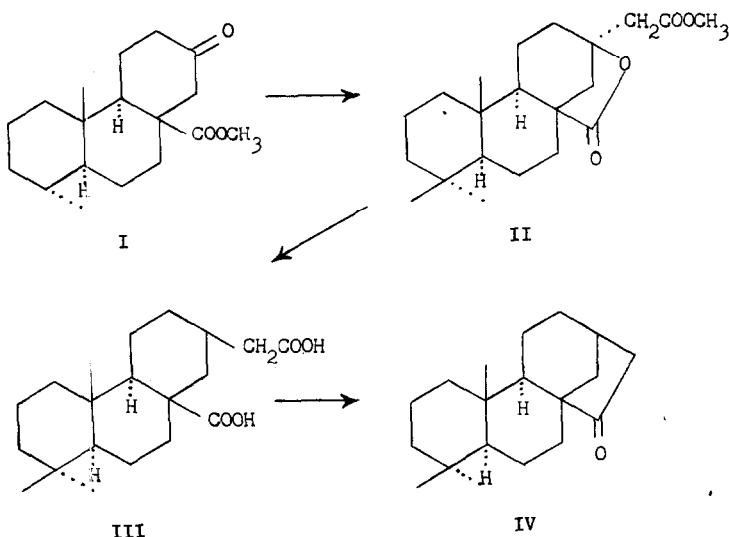


THE TOTAL SYNTHESIS OF PHYLLOCLADENE

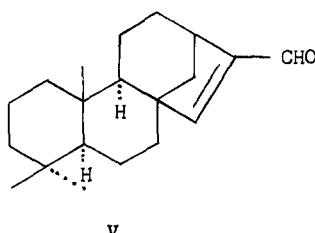
Richard B. Turner and K. Heinz Günshirt

Department of Chemistry, Rice University

Houston, Texas


(Received 28 March 1961)

THE total synthesis of the optically active keto ester (I), a known degradation product of phyllocladene, was recently reported from this laboratory.¹ We wish at this time to record the total synthesis of phyllocladene itself.


Treatment of I with zinc and methyl bromoacetate according to the Reformatsky procedure affords the lactonic ester (II), m.p. 133-134°, $[\alpha]_D^{22} + 17^\circ$ (c, 1.00 chloroform), $\lambda_{\text{max}}^{\text{CS}_2}$ 5.63, 5.74, (Found: C, 72.25; H, 9.08. $C_{21}H_{32}O_4$ requires: C, 72.37; H, 9.26), convertible by successive reaction with sodium methoxide, platinum-hydrogen and sodium hydroxide into the diacid (III), m.p. 204.5-205°, $[\alpha]_D^{26} + 7.2^\circ$ (c, 0.70 chloroform), (Found: C, 71.20; H, 9.96. $C_{20}H_{32}O_4$ requires: C, 71.39; H, 9.59). Pyrolysis of III as the barium salt yields IV, m.p. 133.5-134°, $[\alpha]_D^{26} - 36^\circ$ (c, 0.75 chloroform), $\lambda_{\text{max}}^{\text{CS}_2}$ 5.76, which was shown by direct comparison to be identical with the corresponding ketone recently obtained from phyllocladene by Henderson and Hodges².

¹ R.B. Turner and P.E. Shaw, Tetrahedron Letters No.18, 24 (1960). See also R.F. Church, R.E. Ireland and J.A. Marshall, Ibid. No. 17, 1 (1960).

² R. Henderson and R. Hodges, Tetrahedron 11, 226 (1960).

Condensation of IV with ethyl formate in the presence of sodium hydride gave the expected hydroxymethylene ketone, which was converted, without purification, into the α , β -unsaturated aldehyde (V), m.p. 127-128°, $[\alpha]_D^{27} - 63.3^\circ$ (c, 0.60 chloroform), $\lambda_{\text{max}}^{\text{CS}_2} 3.70, 5.96$, by reaction with butanone ethylene ketal - *p*-toluene-sulfonic acid, followed by treatment with lithium aluminum hydride and aqueous acid.³ The identity of V with the product of this constitution derived by Briggs and his collaborators⁴ from

³ cf. L. Ruzicka, C.F. Seidel, H. Schinz and M. Pfeiffer, Helv. Chim. Acta 31, 422 (1948).

⁴ L.H. Briggs, B.F. Cain and B.R. Davis, Tetrahedron Letters No.17, 9 (1960).

isophyllocladene was established by direct comparison. The present synthesis, coupled with the conversion (Wolff-Kishner reduction) of V into phyllocladene,⁴ constitutes a total synthesis of the latter compound.

It is a pleasure to acknowledge the support of the National Institutes of Health and of the Robert A. Welch Foundation in the pursuit of this work.